Skip to Main Content
The online home for the publications of the American Statistical Association
41
Views
9
CrossRef citations to date
0
Altmetric
Theory and Method

An Empirical Bayes Model for Markov-Dependent Binary Sequences with Randomly Missing Observations

, , &
Pages 1364-1372 | Received 01 Jun 1993, Published online: 27 Feb 2012
 

Abstract

We develop an improved empirical Bayes estimation methodology for the analysis of two-state Markov chains observed from heterogeneous individuals. First, the two transition probabilities corresponding to each chain are assumed to be drawn from a common, bivariate distribution that has beta marginals. Second, randomly missing observations are incorporated into the likelihood for the hyperparameters by efficiently summing over all possible values for the missing observations. A likelihood ratio test is used to test for dependence between the transition probabilities. Posterior distributions for the transition probabilities are also derived, as is an approximation for the equilibrium probabilities. The proposed procedures are illustrated in a numerical example and in an analysis of longitudinal store display data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.