Skip to Main Content
The online home for the publications of the American Statistical Association
2,509
Views
54
CrossRef citations to date
0
Altmetric
Theory and Methods

Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model

&
Pages 1268-1283 | Received 01 Oct 2016, Published online: 08 Oct 2018
 

ABSTRACT

High-frequency financial data allow us to estimate large volatility matrices with relatively short time horizon. Many novel statistical methods have been introduced to address large volatility matrix estimation problems from a high-dimensional Itô process with microstructural noise contamination. Their asymptotic theories require sub-Gaussian or some finite high-order moments assumptions for observed log-returns. These assumptions are at odd with the heavy tail phenomenon that is pandemic in financial stock returns and new procedures are needed to mitigate the influence of heavy tails. In this article, we introduce the Huber loss function with a diverging threshold to develop a robust realized volatility estimation. We show that it has the sub-Gaussian concentration around the volatility with only finite fourth moments of observed log-returns. With the proposed robust estimator as input, we further regularize it by using the principal orthogonal component thresholding (POET) procedure to estimate the large volatility matrix that admits an approximate factor structure. We establish the asymptotic theories for such low-rank plus sparse matrices. The simulation study is conducted to check the finite sample performance of the proposed estimation methods.

Funding

Supported by NSF Grant DMS-1406266 and NIH Grant R01-GM072611-11, and National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190, China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.