Skip to Main Content
The online home for the publications of the American Statistical Association
1,211
Views
166
CrossRef citations to date
0
Altmetric
Articles

t-Statistic Based Correlation and Heterogeneity Robust Inference

&
Pages 453-468 | Received 01 Feb 2008, Published online: 01 Jan 2012
 

Abstract

We develop a general approach to robust inference about a scalar parameter of interest when the data is potentially heterogeneous and correlated in a largely unknown way. The key ingredient is the following result of Bakirov and Székely (2005) concerning the small sample properties of the standard t-test: For a significance level of 5% or lower, the t-test remains conservative for underlying observations that are independent and Gaussian with heterogenous variances. One might thus conduct robust large sample inference as follows: partition the data into q≥2 groups, estimate the model for each group, and conduct a standard t-test with the resulting q parameter estimators of interest. This results in valid and in some sense efficient inference when the groups are chosen in a way that ensures the parameter estimators to be asymptotically independent, unbiased and Gaussian of possibly different variances. We provide examples of how to apply this approach to time series, panel, clustered and spatially correlated data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.