References
- D.W. Adrian, R. Maitra, and D.B. Rowe, Complex-valued time series modeling for improved activation detection in fMRI studies, Ann. Appl. Stat. 12 (2018), pp. 1451–1478.
- K. Amunts, A. Malikovic, H. Mohlberg, T. Schormann, and K. Zilles, Brodmann's areas 17 and 18 brought into stereotaxic space – where and how variable? NeuroImage 11 (2000), pp. 66–84.
- P.A. Bandettini, E.C. Wong, R.S. Hinks, R.S. Tikofsky, and J.S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. 25 (1992), pp. 390–397.
- M. Bezener, J. Hughes, and G. Jones, Bayesian spatiotemporal modeling using hierarchical spatial priors, with applications to functional magnetic resonance imaging (with discussion), Bayesian Anal. 13 (2018), pp. 1261–1313.
- M. Bianciardi, M. Fukunaga, P. van Gelderen, S.G. Horovitz, J.A. de Zwart, K. Shmueli, and J.H. Duyn, Sources of fMRI signal fluctuations in the human brain at rest: a 7T study, Magn. Reson. Imaging. 27 (2009), pp. 1019–1029.
- G.M. Boynton, S.A. Engel, G.H. Glover, and D.J. Heeger, Linear systems analysis of functional magnetic resonance imaging in human V1, J. Neurosci. 16 (1996), pp. 4207–4221.
- R.W. Brown, Y.C.N. Cheng, E.M. Haacke, M.R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2014.
- R.W. Cox, AFNI: software for analysis and visualization of functional magnetic resonance neuroimages, Comput. Biomed. Res. 29 (1996), pp. 162–173.
- R. Epstein and N. Kanwisher, A cortical representation of the local visual environment, Nature 392 (1998), pp. 598–601.
- J.M. Flegal, M. Haran, and G.L. Jones, Markov chain Monte Carlo: can we trust the third significant figure? Stat. Sci. 23 (2008), pp. 250–260.
- K.J. Friston, J. Ashburner, C.D. Frith, J.B. Poline, J.D. Heather, and R.S.J. Frackowiak, Spatial registration and normalization of images, Hum. Brain. Mapp. 3 (1995), pp. 165–189.
- K.J. Friston, A.P. Holmes, K.J. Worsley, J.P. Poline, C.D. Frith, and R.S.J. Frackowiak, Statistical parametric maps in functional imaging: A general linear approach, Hum. Brain. Mapp. 2 (1994), pp. 189–210.
- A.E. Gelfand and A.F.M. Smith, Sampling-based approaches to calculating marginal densities, J. Am. Stat. Assoc. 85 (1990), pp. 398–409.
- H. Gudbjartsson and S. Patz, The Rician distribution of noisy MRI data, Magn. Reson. Med. 34 (1995), pp. 910–914.
- J. Hughes and M. Haran, Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 75 (2013), pp. 139–159.
- G. Krüger and G.H. Glover, Physiological noise in oxygenation-sensitive magnetic resonance imaging, Magn. Reson. Med. 46 (2001), pp. 631–637.
- J. Lee, M. Shahram, A. Schwartzman, and J.M. Pauly, Complex data analysis in high-resolution SSFP fMRI, Magn. Reson. Med. 57 (2007), pp. 905–917.
- M.A. Lindquist, The statistical analysis of fMRI data, Stat. Sci. 23 (2008), pp. 439–464.
- M.A. Lindquist, J.M. Loh, L.Y. Atlas, and T.D. Wager, Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling, NeuroImage 45 (2009), pp. S187–S198.
- M. Mikl, R. Mareček, P. Hluštík, M. Pavlicová, A. Drastich, P. Chlebus, M. Brázdil, and P. Krupa, Effects of spatial smoothing on fMRI group inferences, Magn. Reson. Imaging. 26 (2008), pp. 490–503.
- T.J. Mitchell and J.J. Beauchamp, Bayesian variable selection in linear regression, J. Am. Stat. Assoc. 83 (1988), pp. 1023–1032.
- D.R. Musgrove, J. Hughes, and L.E. Eberly, Fast, fully Bayesian spatiotemporal inference for fMRI data, Biostatistics 17 (2016), pp. 291–303.
- N. Petridou, M. Italiaander, B.L. van de Bank, J.C.W. Siero, P.R. Luijten, and D.W.J. Klomp, Pushing the limits of high-resolution functional MRI using a simple high-density multi-element coil design, NMR. Biomed. 26 (2013), pp. 65–73.
- B. Picinbono, Second-order complex random vectors and normal distributions, IEEE. Trans. Signal. Process. 44 (1996), pp. 2637–2640.
- R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2023). Available at https://www.R-project.org/(open in a new window).
- S.M. Rao, P.A. Bandettini, J.R. Binder, J.A. Bobholz, T.A. Hammeke, E.A. Stein, and J.S. Hyde, Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex, J. Cereb. Blood. Flow. Metab. 16 (1996), pp. 1250–1254.
- B.J. Reich, J.S. Hodges, and V. Zadnik, Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models, Biometrics 62 (2006), pp. 1197–1206.
- S.O. Rice, Mathematical analysis of random noise, Bell Syst. Tech. J. 23 (1944), pp. 282–332.
- D.B. Rowe, Modeling both the magnitude and phase of complex-valued fMRI data, NeuroImage 25 (2005), pp. 1310–1324.
- D.B. Rowe, Parameter estimation in the magnitude-only and complex-valued fMRI data models, NeuroImage 25 (2005), pp. 1124–1132.
- D.B. Rowe, Magnitude and phase signal detection in complex-valued fMRI data, Magn. Reson. Med. 62 (2009), pp. 1356–1360.
- D.B. Rowe, A.D. Hahn, and A.S. Nencka, Functional magnetic resonance imaging brain activation directly from k-space, Magn. Reson. Imaging. 27 (2009), pp. 1370–1381.
- D.B. Rowe and B.R. Logan, A complex way to compute fMRI activation, NeuroImage 23 (2004), pp. 1078–1092.
- D.B. Rowe and B.R. Logan, Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model, NeuroImage 24 (2005), pp. 603–606.
- D.B. Rowe, C.P. Meller, and R.G. Hoffmann, Characterizing phase-only fMRI data with an angular regression model, J. Neurosci. Methods. 161 (2007), pp. 331–341.
- H. Rue and L. Held, Gaussian Markov Random Fields, Chapman & Hall/CRC, Boca Raton, 2005.
- M. Smith and L. Fahrmeir, Spatial Bayesian variable selection with application to functional magnetic resonance imaging, J. Am. Stat. Assoc. 102 (2007), pp. 417–431.
- N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, NeuroImage 15 (2002), pp. 273–289.
- M. Welvaert, J. Durnez, B. Moerkerke, G. Berdoolaege, and Y. Rosseel, neuRosim: an R package for generating fMRI data, J. Stat. Softw. 44 (2011), pp. 1–18.
- M.W. Woolrich, M. Jenkinson, J.M. Brady, and S.M. Smith, Fully Bayesian spatio-temporal modeling of fMRI data, IEEE. Trans. Med. Imaging. 23 (2004), pp. 213–231.
- C.H. Yu, R. Prado, H. Ombao, and D.B. Rowe, A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI, J. Am. Stat. Assoc. 113 (2018), pp. 1395–1410.
- C.H. Yu, R. Prado, H. Ombao, and D.B. Rowe, Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions, Biometrics 79 (2023), pp. 616–628.