References
- E. Cheng, K. Qiu, and Z. Shen, A generating function approach to the surface areas of some interconnection networks, J. Intercon. Networks. 10, (3) (2009), pp. 189–204.
- E. Cheng, K. Qiu, and Z. Shen, A proposed scheme of finding closed form solutions to surface areas of graphs, Lecture Notes in Computer Science 8630 (2014).
- E. Cheng, K. Qiu, and Z. Shen, Length two path centered surface areas of the (n,k)-star graph, Inf. Sci. 332 (2016), pp. 115–130.
- E. Cheng, K. Qiu, and Z. Shen, On deriving explicit formulas of the surface areas for the arrangement graphs and some of the related graphs, Int. J. Comput. Math. 87(13) (2010), pp. 2903–2914.
- E. Cheng, K. Qiu, and Z. Shen, On deriving explicit formulas of the surface areas for the arrangement graphs and some of the related graphs, Int. J. Comput. Math. 87(87) (2010), pp. 2903–2914.
- E. Cheng, K. Qiu, and Z. Shen, On the surface area of the augmented cubes, J. Supercomput. 61(3) (Sept 2012), pp. 856–868.
- E. Cheng, K Qiu, and Z. Shen, The edge-centered surface area of the arrangement graph, Comb. Optim. Appl. 7402 (2012), pp. 49–60.
- W.K. Chiang and R.J. Chen, On the arrangement graph, Inf. Process. Lett. 66(4) (1998), pp. 215–219.
- K. Day and A. Tripathi, Arrangement graphs: A class of generalized star graphs, Inf. Process. Lett. 42(5) (1992), pp. 235–241.
- K. Day and A. Tripathi, Embedding of cycles in arrangement graphs, IEEE Trans. Comput. 42(8) (1993), pp. 1002–1006.
- A. El-Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst. 2(1) (Jan 1991), pp. 31–42.
- G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette, Combinatorics of Genome RearrangementsThe MIT Press, Cambridge, Massachusetts, Vol. 1, 2009.
- E. Gibbons and K. Qiu, A recurrence for the surface area of the (n,k)-star graph, in Proc. of the Tenth International Symposium on Computing and Networking (CANDAR 2022), Himeji, Japan, Dec 2022, pp. 19–26.
- N. Imani, H. Sarbazi-Azad1, and S.G. Akl, Some combinatorial properties of the star graphs: The surface area and volume, Discrete Math. 309(3) (2009), pp. 560–569.
- J.S. Jwo, S. Lakshmivarahan, and S.K. Dhall, A new class of interconnection networks based on the alternating group, Networks 23(4) (1993), pp. 315–326.
- F. Portier and T. Vaughan, Whitney numbers of the second kind for the star poset, Eur. J. Comb. 11(3) (1990), pp. 277–288.
- K. Qiu and S.G. Akl, On some properties of the star graph, VLSI Des. 2(4) (1995), pp. 389–396.
- Z. Shen, K. Qiu, and E. Cheng, On the surface area of (n,k)-star graph, Theor. Comput. Sci. 410(52) (2009), pp. 5481–5490.
- Z. Shen and K. Qiu, An explicit formula of the surface area for the star graph and a proof of its correctness, Congr. Numer. 192 (2008), pp. 115–127.
- L. Wang, S. Subrammanian, S. Latifi, and P.K. Srimani, Distance distribution of nodes in star graphs, Appl. Math. Lett. 19(8) (2006), pp. 780–784.